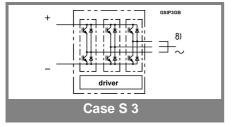

SKiiP 942GB120-3D

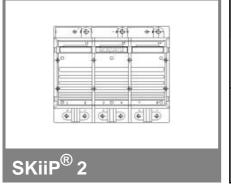
2-pack - integrated intelligent Power System

Power section


SKiiP 942GB120-3D

Power section features

- SKiiP technology inside
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute	Maximum Ratings	Γ _s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	900 (675)	Α			
Inverse diode						
$I_F = -I_C$	$T_s = 25 (70) ^{\circ}C$	900 (675)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	6480	Α			
I ² t (Diode)	Diode, T _j = 150 °C, 10 ms	210	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V_{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

	•				•				
Characteristics				T_s = 25 $^\circ$	C unless	otherwise	specified		
Symbol	Conditions				min.	typ.	max.	Units	
IGBT									
V_{CEsat}	I _C = 750 A	, T _i = 25 (1	25) °C			2,6 (3,1)	3,1	V	
V _{CEO}	T _i = 25 (125) °C					1,2 (1,3)	1,5 (1,6)	V	
r_{CE}	$T_{j} = 25 (12)$	25) °C				1,8 (2,3)	2,1 (2,7)	mΩ	
I _{CES}	$V_{GE} = 0 V$	V _{CE} = V _{CE}	ES,			(45)	1,2	mA	
	$T_j = 25 (12)$	25) °C							
E _{on} + E _{off}	I _C = 750 A	, V _{CC} = 600	V 0				225	mJ	
	T _j = 125 °C	C, V _{CC} = 90	00 V				397	mJ	
R _{CC' + EE'}	terminal ch	nip, T _i = 12	5 °C			0,17		mΩ	
L _{CE}	top, botton					5		nH	
C _{CHC}	per phase,	, AC-side				4,2		nF	
Inverse diode									
$V_F = V_{EC}$	$I_F = 750 A$, T _i = 25 (1	25) °C			2,1 (2)	2,6	V	
V_{TO}	$T_j = 25 (12)$,	1,4 (1,1)	V	
r _T	$T_j = 25 (12)$					1,1 (1,3)	,	mΩ	
E _{rr}	$I_{\rm C} = 750 {\rm A}$	00					29	mJ	
	T _j = 125 °C	C, V _{CC} = 90	00 V				37	mJ	
Mechani	cal data								
M _{dc}	DC terminals, SI Units				6		8	Nm	
M _{ac}	AC terminals, SI Units				13	0.7	15	Nm	
W	SKiiP® 2 System w/o heat sink					2,7		kg	
W	heat sink					6,6		kg	
			P16 hea	t sink; 29	95 m³/h)	; " _r " refer	ence to		
temperat		or			1		0.00	12001	
R _{th(j-s)I}	per IGBT per diode						0,03 0,083	K/W K/W	
R _{th(j-s)D}		_					•	-	
R _{th(s-a)}	per module		\			•	0,036	K/W	
Z_{th}	R _i (mK/W)	(max. valu	ies) 3	4	l 1	tau 2	_i (s) 3	4	
7	3	23	3 4	0	1	∠ 0,13	0,001	4 1	
Z _{th(j-r)I}	9	64	10	0	1 1	0,13	0,001	1	
Z _{th(j-r)D}	11,1	18,3	3,5	3,1	204	60	6	0,02	
$Z_{th(r-a)}$	' ', '	10,5	3,3	٥, ١	204	00	U	0,02	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

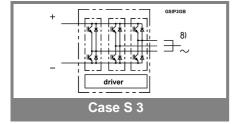
SKiiP 942GB120-3D

Absolute	Maximum Ratings	_a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f _{sw}	switching frequency	16	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

2-pack - integrated intelligent Power System

2-pack integrated gate driver

SKiiP 942GB120-3D


Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- · Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- · Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 25/85/56

Characte	eristics	(T _a = 25 °C)			
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	260+490	260+490*f/f _{max} +1,2*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	200+360	200+360*f/f _{max} +0,85*(I _{AC} /A)		
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
$t_{d(on)IO}$	input-output turn-on propagation time			1,5	μs
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs
tpERRRESET	error memory reset time	9			μs
t _{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		900		
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		1125		Α
I _{TRIPLG}	ground fault protection				Α
T_tp	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

